Лучевая терапия, показания и противопоказания к применению

Этот метод предусматривает воздействие на организм человека ионизирующего излучения радиоактивных элементов, методика облучения применяется в лечебной дозе, которая опасна для опухоли, но не для здоровья человека. Иногда, когда вылечить человека не удается, операция противопоказана, с целью облегчения и продления жизни применяется паллиативная лучевая терапия.
Показания и противопоказания к лучевой терапии

а) Показания к лучевой терапии злокачественных опухолей
— Наличие гистологически верифицированной злокачественной опухоли(иногда возможна цитологическая верификация)
Противопоказания к ЛТ злокачественных опухолей:
1. Резкое ослабление сопротивляемости организма (раковая кахексия)
2. Лучевая болезнь
3. Тяжелые декомпенсированные заболевания сердечно-сосудистой, дыхательной систем, печени и почек
4. Психические заболевания
5. Туберкулез
б) Показания к лучевой терапии неопухолевых заболеваний:
— Воспаление, в том числе гнойные заболевания хирургического. профиля(фурункулы лица и шеи, абсцессы, гидрадениты, панариций и др.)
— Дистрофические заболевания костно-суставного аппарата(деформирующие артрозы, плече-лопаточные периартриты, пяточные и локтевые бурситы).
— Невриты, невралгии, плекситы, ганглеониты, пост-ампутационный болевой синдром и др.
— Хронические дерматозы, келоидные рубцы, омозолелости, контрактура Дюпюитрена.
— Кератиты, отечный экзофтальм.
Противопоказания к лучевой терапии неопухолевых заболеваний :
Абсолютные противопоказания:
¨ общее тяжелое состояние больного с резким ослаблением иммунитета;
¨ тяжелые сопутствующие заболевания сердечно-сосудистой, дыхательной системы, печени, почек в стадии декомпенсации;
¨ лейкопения (<3200 в 1мм ), тромбоцитопения (<150000), выраженная анемия;
¨ лучевая болезнь и лучевые повреждения в анамнезе;
¨ туберкулез;
¨ психические заболевания с потерей ориентации во времени и пространстве.
Относительные противопоказания:
¨ острые септические и инфекционные заболевания;
¨ выраженные воспалительные изменения в зоне облучения, вызванные различными физическими и химическими агентами, в том числе физиопроцедурами;
¨ беременность и детский возраст

Виды ионизирующих излучений, характеристика взаимодействия их с тканями живого организма

Ионизирующими называют излучения, взаимодействие которых со средой приводит к образованию ионов различных знаков. Источники этих излучений широко используются в атомной энергетике, технике, химии, медицине, сельском хозяйстве и т. п. Работа с радиоактивными веществами и источниками ионизирующих излучений представляет потенциальную угрозу здоровью и жизни людей, которые участвуют в их использовании.
К ионизирующим относятся два вида излучений:
1) корпускулярное (α- и β-излучения, нейтронное излучение);
2) электромагнитное (γ-излучение и рентгеновское).

Альфа-излучение – это поток ядер атомов гелия, испускаемых веществом при радиоактивном распаде вещества или при ядерных реакциях. Значительная масса α-частиц ограничивает их скорость и увеличивает число столкновений в веществе, поэтому α-частицы обладают высокой ионизирующей способностью и малой проникающей способностью. Пробег α-частиц в воздухе достигает 8÷9 см, а в живой ткани – несколько десятков микрометров. Это излучение не представляет опасности до тех пор, пока радиоактивные вещества, испускающие a-частицы, не попадут внутрь организма через рану, с пищей или вдыхаемым воздухом; тогда они становятся чрезвычайно опасными.
Бета-излучение это поток электронов или позитронов, возникающих при радиоактивном распаде ядер. По сравнению с α-частицами β-частицы обладают значительно меньшей массой и меньшим зарядом, поэтому у β-частиц выше проникающая способность, чем у α-частиц, а ионизирующая способность ниже. Пробег β-частиц в воздухе составляет 18 м, в живой ткани – 2,5 см.
Нейтронное излучение – это поток ядерных частиц, не имеющих заряда, вылетающих из ядер атомов при некоторых ядерных реакциях, в частности при делении ядер урана и плутония. В зависимости от энергии различают медленные нейтроны (с энергией менее 1 кЭВ), нейтроны промежуточных энергий (от 1 до 500 кЭВ) и быстрые нейтроны (от 500 кэВ до 20 МэВ). При неупругом взаимодействии нейтронов с ядрами атомов среды возникает вторичное излучение, состоящее как из заряженных частиц, так и из γ-квантов. Проникающая способность нейтронов зависит от их энергии, но она существенно выше, чем у α-частиц или β-частиц. Для быстрых нейтронов длина пробега в воздухе составляет до 120 м , а в биологической ткани – 10 см.
Гамма-излучение представляет собой электромагнитное излучение, испускаемое при ядерных превращениях или взаимодействии частиц (1020÷1022 Гц). Гамма-излучение обладает малым ионизирующим действием, но большой проникающей способностью и распространяется со скоростью света. Оно свободно проходит через тело человека и другие материалы. Это излучение может задержать лишь толстая свинцовая или бетонная плита.
Рентгеновское излучение также представляет собой электромагнитное излучение, возникающее при торможении быстрых электронов в веществе (1017÷1020 Гц).

Ионизирующие излучения имеют ряд общих свойств, два из которых — способность проникать через материалы различной толщины и ионизировать воздух и живые клетки организма — заслуживают особенно пристального внимания.
При изучении действия излучения на организм были определены следующие особенности:
1. Высокая эффективность поглощенной энергии. Малые количества поглощенной энергии излучения могут вызывать глубокие биологические изменения в организме.
2. Наличие скрытого, или инкубационного, периода проявления действия ионизирующего излучения. Этот период часто называют периодом мнимого благополучия. Продолжительность его сокращается при облучении в больших дозах.
3. Действие от малых доз может суммироваться или накапливаться. Этот эффект называется кумуляцией.
4. Излучение воздействует не только на данный живой организм, но и на его потомство. Это так называемый генетический эффект.
5. Различные органы живого организма имеют свою чувствительность к облучению. При ежедневном воздействии дозы 0,002 — 0,005 Гр уже наступают изменения в крови.
6. Не каждый организм в целом одинаково реагирует на облучение.
7. Облучение зависит от частоты. Одноразовое облучение в большой дозе вызывает более глубокие последствия, чем фракционированное.
Энергия, излучаемая радиоактивными веществами, поглощается окружающей средой. В результате воздействия ионизирующего излучения на организм человека в тканях могут происходить сложные физические, химические и биохимические процессы.

Известно, что 2/3 общего состава ткани человека составляют вода и углерод; вода под воздействием излучения расщепляется на водород H и гидроксильную группу ОН, которые либо непосредственно, либо через цепьвторичных превращений образуют продукты с высокой химической активностью: гидратный оксид НО и перекись водорода Н О . Эти соединения взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая ее.

В результате воздействия ионизирующего излучения нарушаются нормальное течение биохимических процессов и обмен веществ в организме. В зависимости от величины поглощенной дозы излучения и индивидуальных особенностей организма вызванные изменения могут быть обратимыми или необратимыми. При небольших дозах пораженная ткань восстанавливает свою функциональную деятельность. Большие дозы при длительном воздействии могут вызвать необратимое поражение отдельных органов или всего организма.

Любой вид ионизирующих излучений вызывает биологические изменения в организме как при внешнем (источник находится вне организма), так и при внутреннем облучении (радиоактивные вещества попадают внутрь организма, например пероральным или ингаляционным путем).

Степень опасности зависит также от скорости выведения вещества из организма. Если радионуклиды, попавшие внутрь организма, однотипны с элементами, которые потребляются человеком с пищей (натрий, хлор, калий и др.), то они не задерживаются в организме, а выделяются вместе с ними.
Инертные радиоактивные газы (аргон, ксенон, криптон и др.), попавшие через легкие в кровь, не являются соединениями, входящими в состав ткани. Поэтому они со временем полностью удаляются из организма.

Атом, изотопы, ионы, радионуклиды. Свойства, клинические применение

Атом – одноядерная, неделимая химическим путем частица химического элемента, носитель свойства вещества.

Вещества состоят из атомов. Сам атом состоит из положительно заряженного ядра и отрицательно заряженного электронного облака. В целом атом электронейтрален. Размер атома полностью определяется размером его электронного облака, поскольку размер ядра ничтожно мал по сравнению с размером электронного облака. Ядро состоит из Z положительно заряженных протонов и N нейтронов, которые не несут на себе заряд. Таким образом, заряд ядра определятся только количеством протонов и равен порядковому номеру элемента в таблице Менделеева.

Положительный заряд ядра компенсируется отрицательно заряженными электронами (заряд электрона -1 в условных единицах), которые формируют электронное облако. Количество электронов равно количеству протонов. Массы протонов и нейтронов равны. Масса атома определятся массой его ядра, поскольку масса электрона примерно в 1850 раз меньше массы протона и нейтрона и в расчетах редко учитывается.

Нуклидывид атомов, характеризующийся определённым массовым числом, атомным номером и энергетическим состоянием ядер и имеющий время жизни, достаточное для наблюдения.

Нуклиды делятся на стабильные и радиоактивные (радионуклиды, радиоактивные изотопы). Стабильные нуклиды не испытывают спонтанных радиоактивных превращений из основного состояния ядра. Радионуклиды путём радиоактивных превращений переходят в другие нуклиды. В зависимости от типа распада, образуются либо другой нуклид того же самого элемента, либо нуклид другого элемента с тем же массовым числом, либо два или несколько новых нуклидов.

Среди радионуклидов выделяются короткоживущие и долгоживущие. Короткоживущиерадионуклиды либо являются членами природные радиоактивных рядов, либо непрерывно образуются в результате ядерных реакций, вызываемых космическим излучением. Радионуклиды, существующие на Земле с момента её формирования, часто называют природными долгоживущими, или примордиальными радионуклидами; такие нуклиды имеют период полураспада. Для каждого элемента были искусственно получены радионуклиды; для элементов с атомным номером (т. е. числом протонов), близким к одному из «магических чисел», количество известных нуклидов может доходить до нескольких десятков. Наибольшим количеством известных нуклидов – 46 – обладает ртуть.

Изотопы– разновидности атомов какого-либо химического элемента, которые имеют одинаковый атомный (порядковый) номер, но при этом разные массовые числа. Название связано с тем, что все изотопы одного атома помещаются в одно и то же место (в одну клетку) таблицы Менделеева. Химические свойства атома зависят от строения электронной оболочки, которая, в свою очередь, определяется в основном зарядом ядра Z (то есть количеством протонов в нём) и почти не зависят от его массового числа A (то есть суммарного числа протонов Z и нейтронов N). Все изотопы одного элемента имеют одинаковый заряд ядра, отличаясь лишь числом нейтронов.

Ио́н (др.-греч. ἰόν «идущее») — частица, в которой общее количество протонов не равно общему числу электронов. Может быть атомом или молекулой. Ион, в котором общее число протонов больше общего числа электронов, имеет положительный заряд и называется катионом. Ион, в котором общее число протонов меньше общего числа электронов, имеет отрицательный заряд и называется анионом. В виде самостоятельных частиц ионы встречаются во всех агрегатных состояниях вещества: в газах (в частности, в атмосфере), в жидкостях (в расплавах и растворах), в кристаллах и в плазме (в частности, в межзвёздном пространстве).

Являясь химически активными частицами, ионы вступают в реакции с атомами, молекулами и между собой. В растворах ионы образуются в результате электролитической диссоциации и обуславливают свойства электролитов. Согласно химической номенклатуре, название катиона, состоящего из одного атома совпадает с названием элемента. Ионы подразделяют на две большие группы — простые и сложные. Простые (моноатомные) ионы содержат одно атомное ядро. Сложные (полиатомные) ионы содержат не менее двух атомных ядер.

Отдельно выделяют ион-радикалы — заряженные свободные радикалы. Ион-радикалы в свою очередь подразделяют на катионы-радикалы и анионы-радикалы. Катион-радикалы — положительно заряженные частицы с одним неспаренным электроном. Анион-радикалы — отрицательно заряженные частицы с одним неспаренным электроном [2] Строение простых ионов

Простые ионы состоят из одного атомного ядра и электронов. Атомное ядро состоит из протонов и нейтронов, неся практически всю (более 99,8%) массу иона и создаёт положительно заряженное электрическое поле. Заряд атомного ядра определяется числом протонов, которое совпадает с порядковым номером элемента в периодической таблице Д.И. Менделеева. Исключением из общего правила является положительный ион водорода, который не содержит электронов и считается элементарной частицей — протоном.

В то время как отрицательный ион водорода содержит два электрона. Фактически гидрид-ион является системой из одного протона и двух электронов и изоэлектронен положительному иону лития, имеющему в электронной оболочке также два электрона.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *